lightprocesses:

Foldable fractal.Related: Fractal,  Abstract Creatures

lightprocesses:

Foldable fractal.

Related: Fractal,  Abstract Creatures

I foolishly did not plug in my tablet and its battery is dead, so I have to resort to this primitive dead-tree technology.

Modern geometry professor (via mathprofessorquotes)

There’s probably not a theorem that says infinity/infinity is 5/7.

Real analysis professor (via mathprofessorquotes)

(Fonte: chaotic-renan)

peopleplacesnthings:

John Coltrane - My Favorite Things

I’ll answer your question after class, but for now let’s squeeze.

Calculus Professor before teaching the squeeze theorem.  (via mathprofessorquotes)
spring-of-mathematics:

Proof: (1+2+3+….+n)^2 = 1^3+2^3+3^3+….+n^3.
Explains this Image:
(1+2+3+4+5+6+7+8)^2 = 1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3
S(square) = (1+2+3+4+5+6+7+8)x(1+2+3+4+5+6+7+8) = (1+2+3+4+5+6+7+8)^2
Also, S(square) = SUM of small squares = 1x1^2 + 2x(2^2) + 3x(3^2) + 4x(4^2)+…….+8x(8^2) = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3
(nx(n^2) mean n squares have S = n^2)
In there, pink square and white square are compensate for each other.
See more: 3D geometry proof posted by Hyrodium’s Graphical MathLand &TwoCubes.
Image: Carre de la somme des 8 premiers entiers on Wikipedia.

spring-of-mathematics:

Proof: (1+2+3+….+n)^2 = 1^3+2^3+3^3+….+n^3.

Explains this Image:

(1+2+3+4+5+6+7+8)^2 = 1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3

S(square) = (1+2+3+4+5+6+7+8)x(1+2+3+4+5+6+7+8) = (1+2+3+4+5+6+7+8)^2

Also, S(square) = SUM of small squares = 1x1^2 + 2x(2^2) + 3x(3^2) + 4x(4^2)+…….+8x(8^2) = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3

(nx(n^2) mean n squares have S = n^2)

In there, pink square and white square are compensate for each other.

See more: 3D geometry proof posted by Hyrodium’s Graphical MathLand &TwoCubes.

Image: Carre de la somme des 8 premiers entiers on Wikipedia.

geometrymatters:

diatoms - california academy of sciences geology

1. Biddulphia deodora -  Miocene, ph#000058D,scale bar = 10 µm

2. Actinoptychus chenevierei - holotype, Cretaceous, ph#000677D, scale bar = 10 µm

3. Lithodesmium margaritaceum - Cretaceous, ph#000865D, scale bar = 10 µm

4. Aulacodiscus currus - holotype, Eocene, ph#001088D, scale bar = 10 µm

5. Triceratium diversum - holotype, Eocene, ph#001131D, scale bar = 10 µm

6. Triceratium swastika - Cretaceous, ph#000956D, scale bar = 10 µm

(Fonte: Flickr / casgeology, via stochastastic)